
This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest ServiceNow Development Handbook, and level-up your career!

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

BUSINESS RULE ORDER & .UPDATE()

One common point of confusion when dealing with scripts in Business Rules, is when to
use current.update(). The answer to this question becomes intuitive once you have a clear

understanding of how the different types of Business Rules work. There are four ways a
Business Rule can run, indicated by the When field on the form:

• Before

• After

• Async

• Display

The When field on the Business Rule dictates several things about its behavior, and what

parameters are available to scripts. First, recall that Business Rules are triggered by database
options (insert, update, delete, or sometimes on query1). With this in mind, the values in the
When field make a bit more sense.

Let's discuss each of the options for “when” a Business Rule runs, how they alter the
behavior of our Business Rule, and what we can and can't do with each:

BEFORE

The before option means that the Business Rule will run before the insert, update, or delete
operation is committed to the database. This means that you can still stop the operation by

1 For more information on Query Business Rules and why they can be tricky and (if used incorrectly) even harmful, see my article on the

subject on SN Pro Tips: https://qbr.snc.guru.

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru
https://qbr.snc.guru/

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest ServiceNow Development Handbook, and level-up your career!

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

using current.setAbortAction(true);. This also means that you do not need to call the

current.update() API in order to commit any changes that you make, because the record

is already "on its way to the database", and will be committed after all "before" logic is
finished running, assuming that the operation is not aborted by either using
current.setAbortAction(true), or by executing a business rule with the “Abort action”
checkbox checked.

Before Business Rules are useful for when you need to alter something about the record

itself before it ever touches the database or prevent the database operation from happening
at all. They should not (generally) be used to update other records – that is what "after" and
"async" Business Rules are for.

To reiterate: “before” Business Rules are generally for updating the record which
triggered them to run. You should not use a “before” Business Rule on the Requested Item
[sc_req_item] table to create or update a Catalog Task [sc_task].

AFTER

The after option means that the Business Rule will run after the database operation, but
before the user's browser is refreshed.

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest ServiceNow Development Handbook, and level-up your career!

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

If you make a change to the record in an “after” Business Rule, it will not be committed
to the database unless you call current.update(). However, if you need to update the

current record in this way, it's almost always best to use a "before" Business Rule. It is
extremely rare to have a good use-case for calling current.update() in any Business Rule.

Making a change to the “current” record and then calling current.update() in an "after"

Business Rule would actually re-trigger any business logic (including your “after” Business
Rule), since it constitutes a new database operation. This could even lead to an infinite loop!

“So,” you might be asking, “what, then, are 'after' Business Rules used for?”
Although they should not be used to update the current record, "after" Business Rules

are fantastically useful for updating related records; especially records that might be shown
in related lists on the record that triggered the Business Rule. For example, if you're on a
Request Item [sc_req_item] (RITM) record, and you have a Business Rule that runs based off
of an event in that table, but it updates one or more child Catalog Task [sc_task] records
(which are shown in the related list at the bottom of the RITM record), then an after Business
Rule is usually the way to go. However, if you need to update another type of record that
doesn't need to be displayed when the form reloads after an update, an async rule is best.

Why? Because while “before” and “after” Business Rules are running, the user is waiting!
These types of Business Rules run synchronously, meaning that the user has to sit around
and wait for entire milliseconds while those operations finish running.

Async Business Rules, as we'll learn below, are different.

ASYNC

The async option in the When field, indicates that a business rule should run
asynchronously, whenever the system scheduler is able to run it (usually within just a few
seconds). This means that after saving a record, the server does not wait for async Business
Rules to finish running before returning control to the user, and reloading the form (or
whatever page the user will be directed to).

Async business rules are an extremely useful tool for maximizing performance and
creating a positive and snappy user experience, but it is important to be aware of the side-
effects of using Async over a different sort of Business Rule. For example, if you use an async
Business Rule to update a record that will be displayed in a related list on the form that the

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest ServiceNow Development Handbook, and level-up your career!

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

user will see when the page refreshes, then when you load the form and view that related
list, you will (usually) not see those changes. This is because when the related record was
loaded from the database when the form reloads, it's likely that the async Business Rule
would not yet have had a chance to run.

The up-side to async Business Rules, is that it is much more efficient and user-friendly
to perform certain operations asynchronously (and therefore provide a much better user
experience, when used correctly!) For example, updating a peripheral or related record
which is not shown on the form, or triggering some other operation such as a REST API call
to update or trigger some logic in some external system that doesn't need to be done
immediately upon the triggering record being updated. If the operation can stand to wait a
few seconds, make it async! The only exception here, is that the previous object (the state

of the triggering record before the update that triggered the BR was made) is not available in
async BRs, so if you need access to that, you might still need to use an "after" Business Rule
to perform that operation.

DISPLAY

Finally, we come to display Business Rules. These are a little bit different than the other
types we discussed above.

Display Business Rules run after the record is retrieved from the database. This means
that they are not triggered by any changes to the record itself. Instead, they are triggered by
the record being loaded from the database to be displayed in a form or interacted with in a
script.

The results of these Business Rules can sometimes be a little bit unintuitive, since they
modify data that's sent from the server, without modifying the record itself (unless you call
current.update() in a “display” Business Rule, which… don't). This means that it's

possible that you'd end up seeing data in the form which does not match the data in the
database! For this reason, display Business Rules are not often used to modify any records.
Instead, they're most commonly used to populate the scratchpad2, which is an object that's
used to make certain data available on the client; usually for client scripts. This is extremely
useful from a performance perspective, so we go into detail about the scratchpad in the AJAX
& Display Business Rules section!

2 More info on the scratchpad, and how to use it with “display” Business Rules, in the “AJAX & Display Business Rules” section.

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest ServiceNow Development Handbook, and level-up your career!

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

AJAX & DISPLAY BUSINESS RULES

There are a multitude of reasons you might need to communicate between the client, and
the server (such as in a Client Script, Catalog Client Script, or UI Policy), including:

• Retrieving a system property to determine whether a field should be visible (or for
whatever reason you want, I'm not your dad)

• Checking some value on another record in another table, possibly to determine how
some logic on the front-end should behave

• Retrieving the GlideRecord object for a record being referenced on a form, to get the
value in some field on that referenced record3

• Dealing with date/time objects, and calculating system time

With the notable exception of certain Client Scripts which must run on submit, it's always

important to make sure we're performing asynchronous server requests in client-side code.
In most cases, this can be done by specifying a callback function (such as when using the
GlideRecord .query() method client-side), or by using GlideAjax.

Pro-tip: Need to perform a query in an onSubmit Client Script, but not able to run it synchronously

(such as if your code needs to run on the Service Portal)? I've written a method for doing that, which
you can see in my article: Asynchronous onSubmit Client Scripts:

http://onsubmit.snc.guru/

3 It isn’t possible to “dot-walk” using the g_form APIs in a Client Script, so you’ll have to use something like g_form.getReference()

(asynchronously) in the Client Script to retrieve a record before you can retrieve its field values. However, a common mistake is to use
g_form.getReference() to get a GlideRecord object for a referenced record, in order to retrieve its sys_id. This is unnecessary, because

the actual value of the reference field itself, is the referenced record’s sys_id!
You can retrieve a referenced record’s sys_id by simply using g_form.getValue(‘some_reference_field’);.

Orlando API docs for the g_form.getReference() API can be found at:

https://developer.servicenow.com/dev.do#!/reference/api/orlando/client/c_GlideFormAPI#r_GlideFormGetReference_String_Function

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru
http://onsubmit.snc.guru/
https://developer.servicenow.com/dev.do#!/reference/api/orlando/client/c_GlideFormAPI#r_GlideFormGetReference_String_Function

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest ServiceNow Development Handbook, and level-up your career!

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

If you know in advance that you're going to need certain information nearly every time a
given form is loaded, you can use a display Business Rule to grab the data from the server
as the form loads, and pass it up to the client. Display Business Rules are a special type of
script that run on the server when you request a record's data from the database, in order
to load a form.

Pro-tip: It's not within the scope of this handbook, but if you're not sure how to make your request

run asynchronously, I've written an entire article on the topic over at SN Pro Tips:
http://ajax.snc.guru/

Once your browser requests the page and record from the database to display in the form,

the display Business Rule runs on the server if the record you're loading matches the
condition in the Business Rule. In that script, you could modify the data in the “current”

object if you want to change how the record is shown in the form, but you'll also have access
to the g_scratchpad object. You can add properties to this object in the display Business Rule,

and these properties will be available to any Client Script, UI Policy, or UI Action running on
that form via the same g_scratchpad object.

Note: This does not work for Catalog Client Scripts. You'll have to rely on asynchronous AJAX

requests to the server in that case.

Display Business Rules are probably the most effective and efficient way of retrieving data

from the server, but they are sometimes overkill. For example, if you only need the data that
you would load into g_scratchpad in one special circumstance based on some rare client-

side event, it might make sense to use a GlideAjax call instead. Just make sure that it's
asynchronous!

GlideAjax is the second most efficient means of retrieving data from the server. However,
unlike display Business Rules, GlideAjax typically requires both a client-side, and a server-
side component, so it can be a bit more complicated.

Pro tip: If you look up the documentation on GlideAjax, you'll find that you can add “nodes” to the

returned AJAX, which is useful for returning multiple or complex values from a single call. However,
a much easier and cleaner way of doing this, is to return an object populated with the values you

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru
http://ajax.snc.guru/

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest ServiceNow Development Handbook, and level-up your career!

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

need returned, in properties of that object. The object will then be available when you get the 'answer'

node of the returned XML, and you can work with it directly. Much simpler!
More details on this, GlideAjax, and asynchronicity in general, in my article at:

http://ajax.snc.guru/

Finally, the least efficient method that's still acceptable in a pinch, is an asynchronous

GlideRecord call. The same article linked above, will walk you through how to make a
GlideRecord call happen asynchronously. You can also find documentation on all of these
APIs in the ServiceNow developer site (https://developer.servicenow.com/), for specifics on
how to use them.

To reiterate: If you know exactly what data you need to retrieve from the server in

advance, and the conditions under which you want to retrieve the data are known on load, a
Display Business Rule is probably the best option.

If that isn't the case, then GlideAjax is likely the best option.
For small, efficient queries (such as only returning one record in a script that runs only

occasionally), an asynchronous GlideRecord query can be used.
For getting a GlideRecord object from a reference field, calling g_form.getReference()

asynchronously with a callback function makes the query asynchronous, and is also
acceptable (especially if you're only retrieving a single record).

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru
http://ajax.sngeek.com/
https://developer.servicenow.com/

