SERVICENOW

DEVELOPMENT

HANDBOOK

This is an excerpt from The ServiceNow Development Handbook, on sale now
Click here to get a copy of The ServiceNow Development Handbook, and level-up your career!

exg

4

TIM WOODRUFF

QUERY EFFICIENCY

It's important to be efficient when querying the database (which includes GlideRecord queries). To that end, this section
contains some basic guidelines for making sure your queries are efficient.

Inefficient database operations can be the source of a multitude of performance woes, including client-side issues like fields
taking a long time to update, or the browser locking up when you perform certain actions — and server-side issues, such as lists,
forms, and dashboards simply taking a long time to load. Most commonly, the culprit is one (or many) inefficient or non-
optimized queries.

We've already gone over how to improve client-side performance by using asynchronous queries or other database, server,
and API calls. In this section, we're going to learn how to write queries in such a way that there is an “as-minimal-as-possible”
performance hit.

QUERY SPECIFICITY

You should generally try to make your queries as specific as possible. For example, if you only do something with the records
returned from your query in the event that a specific condition is true, then that condition should be part of the query!
Consider the following code:

var grIncident = new GlideRecord('incident');
grIncident.addActiveQuery () ;
grincident.query();

while (grIncident.next()) {
if (grIncident.getValue ('state') === '3") {
gs.print ('Incident ' + grIncident.getValue ('number') + ' is in state: 3.'");

}

Fig. 9.01

In this example, our database query would be monumentally more efficient if we were to add the condition currently in the i £
block, to the query itself, like so:

var grIncident = new GlideRecord('incident'");
grIncident.addActiveQuery () ;
grIncident.addQuery('state', '3'");
grIncident.query();
while (grIncident.next()) {
gs.print ('Incident ' + grIncident.getValue('number') + ' is in state 3.'");

}
Fig. 9.02

There; that's much better!

One last note on the topic of query specificity: If you ever find yourself checking some field value inside of your query code
block and only doing something if some condition is met, consider whether it would be possible to add that condition to the query
itself.

For example, consider the following code:

SERVICENOW
DEVELOPMENT
HANDBOOK

This is an excerpt from The ServiceNow Development Handbook; on sale now
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career! @g @
o

TIM WOODRUFF

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru

SERVICENOW
DEVELOPMENT
HANDBOOK

> e This is an excerpt from The ServiceNow Development Handbook, on sale now
O Click here to get a copy of The ServiceNow Development Handbook, and level-up your career!

TIM WOODRUFF

var grOpenInc = new GlideRecord('incident');
grOpenInc.addQuery ('active', true);
grOpenInc.query () ;

while (grOpenInc.next ()) {
if (grOpenInc.getValue ('priority', 1)) {
// Do something with the incident
gs.debug (
'Processing incident: ' +

grOpenInc.getValue ('number"')
);

In this code, we’re only doing something if the priority of the Incident is 1. So, wouldn’t it be significantly more efficient if we
just added that condition to the query, as in the below example?

var grOpenInc = new GlideRecord('incident');
grOpenInc.addQuery ('active', true);
grOpenInc.addQuery ('priority', 1);
grOpenInc.query () ;

while (grOpenInc.next()) {
gs.debug (
'Processing incident: ' +

grOpenInc.getValue ('number')
)7

SINGLE-RECORD QUERIES

Any time you use an i f block rather than aloop (suchas if (grInc.next()) {} ratherthanwhile (gr.next()) {}!), that
means you're only looking for one record. The most efficient way to do this is to use the GlideRecord .get () API, and pass in a
single argument: a sys__id or an encoded query. If it is not possible to specify a sys__id, there is a server-side version of the . get ()
APIwhich can accept a query instead of a sys__id. However, due to the difference in client and server-side APIs, and for readability,
itisbesttouse .setLimit () instead, whenever you can't specify a sys__id. Also, when a sys__id is not specified to the . get () API,
it may return multiple records — which can be confusing if you expect only one record, and also has a deleterious impact on
performance, since the query continues after finding one record, to see if it can find more. For these reasons, it's often a good
idea to just stick with using . setLimit (1).

Youcanuse grInc.setLimit (1) to tell the database to stop searching after the first record is found. Otherwise, this would be
like continuing to search for your keys, after you've found them. By the same token, if you are only expecting (or if you only want)
a certain maximum number of records to be found, be sure to use .setLimit () to make the query easier on the database, and
improve performance. Failing to set a limit on your query (or use the .get () API) will cause the database to continue searching
the entire table that you've specified, even after it's found what it was looking for.

If you’d like to see how many “single-record query violations” you have in your instance, you can run a read -only background
script I’'ve written for just that purpose. You can find that script at https://setlimit-gist.snc.guru. That script will tell you not only
how many violations you have in your instance but also give you a link to the script in question, tell you exactly which variable
contains the violation, what function the violation is in, and even tell you on what line that variable is initialized. Just bear in

! Note that you should never use the variable name “gr” in real-world code. It is not descriptive or useful, other than indicating that it hopefully
contains (references) some kind of GlideRecord. See the Naming Conventions > Variables > GlideRecords section for more info.

SERVICENOW
DEVELOPMENT
HANDEOOK

This is an excerpt from The ServiceNow Development Handbook; on sale now
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career! @g @

TIM WOODRUFF

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru
https://setlimit-gist.snc.guru/

SERVICENOW
DEVELOPMENT
HANDBOOK

@g e This is an excerpt from The ServiceNow Development Handbook, on sale now
Click here to get a copy of The ServiceNow Development Handbook, and level-up your career!

TIM WOODRUFF

mind that this script will probably identify more out-of-box records with blatant performance violations than your own scripts...
but I’ll leave it to you to decide what you think about that2.

NESTED QUERIES

It'sagood idea to avoid using nested queries if at all possible. This is because nested queries usually require a separate “inner”
query for every single loop of the “outer” query, and can almost always be written more efficiently.

Nested queries are often incorrectly used when one needs to perform one query based on the records found based on another
query.

Consider the following code:

var grUser;
var grIncident = new GlideRecord('incident');
grIncident.addEncodedQuery ('some query'); //include a query param for 'assigned to not blank'
grIncident.query();

while (grIncident.next()) {
grUser = new GlideRecord('sys user');
if (grUser.get(grIncident.getValue('assigned to'))) {

//do something with the user

}

Fig. 9.03

As you can see in the preceding code block, this would result in a separate query for each record returned from the "outer"
query on the Incident table. If you get 10,000 Incidents from the outer query, that'll result in 10,000 separate queries on the
sys_user table (10,001 total, including the Incident query)!

As you might imagine, 10,001 separate queries could take quite some time. Instead, it would be dramatically more efficient if
we were to use the first query to build a list of sys_user records we want to get from the database, then do a single query to get all
of them. Rather than 10,001 queries, we're just doing two! Even though we're getting just as many records as the previous queries,
we're doing so in one fell swoop, rather than going back-and-forth to the database to get each record.

Consider the following code as an example of dramatically improved efficiency:

var grUser, assignIDs = [];

var grInc = new GlideRecord('incident');
grInc.addEncodedQuery ('some query”asigned to!=NULL');
grInc.query();
while (grInc.next()) {

//This condition keeps the array values unique

if (assignIDs.indexOf (grInc.getValue ('assigned to') < 0)) {

assignIDs.push(grlInc.getValue ('assigned to'));

}

}

grUser = new GlideRecord('sys user');
grUser.addQuery('sys_id', 'IN', assignIDs);
Je y O)%

nere, sucn as 11 you

SERVICENOW
DEVELOPMENT
HANDBOOK

This is an excerpt from The ServiceNow Development Handbook; on sale now
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career! @g @
o

TIM WOODRUFF

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru

SERVICENOW
DEVELOPMENT
HANDBOOK

@g e This is an excerpt from The ServiceNow Development Handbook, on sale now

TIM WOODRUFF

Click here to get a copy of The ServiceNow Development Handbook, and level-up your career!

grUser.query () ;
while (grUser.next ()) {
//NOW do something with the assignee records
}
Fig. 9.04

Note: Although I didn't want to break the flow of the example code, it would actually be far more efficient to use GlideAggregate
and the .groupBy () API for the first query in the preceding example, because we only need the unique assigned_to values!

There is one down-side to the preceding example: When you do the second query, you lose the "context" of the Incident to
which the user was assigned, because we didn't put that data into our array. This can make things difficult, if the action we want
to take on the user record is dependent on some data in the Incident. Not to worry though, you can easily remedy this by storing
this data in an object rather than an array!

In the example code below, we'll construct an object from each Incident returned from the first query, and use the data in that
object to do the work in our second query:

var inc, incAssignedToUser, grUser, assignID, incID;
var assignData = {};
var grIncident = new GlideRecord('incident');
grincident.addEncodedQuery ('some query”assigned to!=NULL');
grIncident.query () ;
while (grIncident.next()) {
incID = grIncident.getValue('sys id');
a551gnID ngnc1dent getValue ('assigned to');
y has not been added to the
assignData object, create it.*/
if (lassignDatalassignID]) {
assignDatalassignID] = {}

}

/*Create an object

new Incident(grIncident) ;

a551gnData[a551gnID][1ncID]

}

grUser = new GlideRecord('sys user');
grUser.addQuery('sys_id', 'IN', Object.keys (assignData)) ;
grUser.query () ;
while (grUser.next()) {
for (inc in assignDatalgrUser.getValue ('sys id')]) {
//Check if property is enumerable -
if (assignData.hasOwnProperty(inc)) {
incAssignedToUser = assignDatalgrUser.getValue('sys id')][inc];
//NOW do something with the user/incident pair

}

/**
* @param grIncident {GlideRecord}
* @constructor
&/
function Incident(grIncident) {
this.sys_id = grIncident.getValue('sys_id');
this.number grIncident.getValue ('number') ;
//etc. ..

Fig. 9.05

SERVICENOW
DEVELOPMENT
HANDBOOK

This is an excerpt from The ServiceNow Development Handbook; on sale now
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career! @g @

TIM WOODRUFF

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru

SERVICENOW
DEVELOPMENT
HANDBOOK

@g e This is an excerpt from The ServiceNow Development Handbook, on sale now
Click here to get a copy of The ServiceNow Development Handbook, and level-up your career!

TIM WOODRUFF

This code uses a constructor function (Incident ()) to generate a structured object from the grincident GlideRecord object,
to store all of the data about the Incident that we might need to use later. In this way, we're '"building a to-do list" which we then
leverage in our second query. In order to keep our second query efficient and limit it to just the records we know we'll need to
interact with, we use object.keys (assignData), which returns an array of the keys in the assignbata object (which you may
have noticed, are the sys__ids of the assignees in question!)

Granted, the preceding code is... quite a lot longer than the first, or second examples. However, it is also a lot more efficient,
and provides whatever additional context you need from the Incident records, when working with the user/assignee records.

Pro-tip: Should you need to, you can get an array of the sys_ids to which a specific user is assigned in the final while loop, using
something like:
Object.keys (assignData[grUser.getValue('sys id')])

SERVICENOW
DEVELOPMENT
HANDBOOK

This is an excerpt from The ServiceNow Development Handbook; on sale now
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career! @g @
o

TIM WOODRUFF

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru

	Query efficiency
	Query specificity
	Single-record queries
	Nested queries

