ServiceNow
DEVELOPMENT
HANDBOOK
=) This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest ServiceNow Development Handbook, and level-up your career!

TIM WOODRUFF

Record Scripts

One way to make your application more modular and customizable, is to off-load some of the control of its behavior to a
collection of records in a table with a Script field. This is a special sort of field that, when displayed in the form, allows you to
write JavaScript code, and provides basic JavaScript linting’ functionality, syntax highlighting, and some other useful features
like automatic indenting of nested code blocks.

The ability to write JavaScript code and store it in a record in a table in ServiceNow is cool but you may be asking yourself,
"what does that actually... do?" — Well, think about it; Business Rules are basically just scripts stored in a table (sys_script),
right? Something must tell that script to execute, and how. Turns out, we can do the same thing!

This will all probably become much clearer with an example, so let's consider a scenario in which we have an application
which exports records from the Incident table in ServiceNow and sends them off to some other system. Maybe the other system
is an archive, or maybe they're doing some external analysis on the data — doesn't matter. We need to get the data out of
ServiceNow, and into this other system.

That may seem straightforward. Just write a Script Include with some methods to do the work of packaging up an Incident
into a JSON object. Make sure it's structured in whatever way the receiving system wants it to be structured. Maybe write a
Business Rule or Scheduled Script Execution to trigger the export trigger (depending on whether we want the data exported
immediately upon update, or once every so-often, respectively).

Remember though, we're trying to make our application as modular and configurable as possible.

What if the receiving system is another ticketing platform, and it calculates priority differently than ServiceNow does? If
that's the case, you'll have to do some calculation to determine what the appropriate priority in the new system ought to be,
based on data in the ticket in ServiceNow.

""Okay, no problem." you might say, "I'll just write a special handler function for calculating the Priority value that we send to the
target system".

Then you learn that the target system has a maximum character count in the description field, of only 1,000 characters;
and worse, that passing in too many characters causes a hard failure resulting in the record being rejected.
""Okay", you continue. "I can write a special handler for that as well".

And the State field in the target system is of course, not an integer, like it is in ServiceNow.
""Third special handler; no biggie", you say, as you die a little inside.

Oh, and did they forget to mention? The target system only has one layer of category — no subcategory field — and the
categories and subcategories don't match up with what's in ServiceNow.
"Uh... I guess I could write a sort of a nested hash-map that—""

And they want to be able to easily map custom fields from ServiceNow, as they're added, without having to sort through
what is now a massive Script Include to slip the code in-between all your special handlers.
"Er.."

Wouldn't it be nice if there were a better way>?
Oh good, there is: scripted control records.

1 "Linting" means using a tool to analyze your code to flag bugs, errors, syntactical issues, etc. (such as missing semicolons or malformed
code blocks).

2 This is where | would have put a meme of Billy Mays saying, "There's got to be a better way!", but I'm pretty sure I'd get dinged for some
kind of obscure copyright thing.

ServiceNow
DEVELOPMENT
HANDBOOK

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

e

TIM WOODRUFF

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru

ServiceNow
DEVELOPMENT
HANDBOOK
=) This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest ServiceNow Development Handbook, and level-up your career!

TIM WOODRUFF

Let's dive into an example of how one might handle this scenario. I'm going to skip some of the basics when it doesn't
matter, just for the sake of this example.

Defining scripted records

We're going to create the scripted records first, which might be a little confusing until we get to the part where we invoke
the scripts in those records, but stay with me; I promise it'll make sense by the end.

First, let's create a table to store some records that will comprise the "field mappings" from the Incident table to whatever
table the records are going into, in the target system. Let's call that table inc_export map3.
After saving the table record, let's add a couple of fields:

1. Active [active]
a. Type: True/False
b. Default value: true
2. Source field name [source_ field name]
a. Type: String
b. Max length: 40
c. Mandatory: true
3. Target field name [target_field_ name]
a. Type: String
b. Max length: 40
c. Mandatory: true
d. Display: true
e. Unique: true
4. Use transform [use_ transform]
a. Type: True/False
b. Default value: false
5. Transform script [transform__script]
a. Type: Script
b. Max length: 40000

When finished, our table should look something like this, and then we can hit Save:

3 Don't forget what we learned in the Naming Conventions chapter: table names are always singular!

ServiceNow
DEVELOPMENT
HANDBOOK

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

e

TIM WOODRUFF

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru

ServiceNow
DEVELOPMENT
HANDBOOK

TIM WOODRUFF

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest ServiceNow Development Handbook, and level-up your career!

= Incident Export Map [Tables view] (/?7 E* E ooo Update | Delete DeleteAll Records
= | Table Columns m Search Columnname¥ Search -
? Dictionary Entries
103 O\ = Column label = Columnname A = Type = Reference = Maxlength = Default value = Display = Mandatory
@ Created by sys_created_by String, (empty) 40 false false
@ Created sys_created_on Date/Time (empty) 40 false false
@ SysID sys_id Sys 1D (GUID) (empty) 32 false false
@ Updates sys_mod_count Integer (empty) 40 false false
@ Updated by sys_updated_by String, (empty) 40 false false
@ Updated sys_updated_on Date/Time (empty) 40 false false
X | Active | active | True/False ltrue false false
X | Source field name | source_field_name |Mg |40 | false | true
X |Targetf\eld name |target7field7name |Mg |20 | true | true
x | Use transform | use_transform | True/False | false false false
X | Transform script | transform_script | script | 40000 | answer ="; //Set the answer variablet... false false
Insert a new row...
v

Now, just to help ourselves and our users out, let's add a default value for the Transform script field, that gives the user a
bit of scaffolding. We could have the script evaluate to set a variable that we define, such as answer, by using something simple
like this:

- 1.
7

answer

Then, in the code we use to invoke the script in this field, we would simply need to retrieve the final value of that variable
after the script's execution (for which there is a simple API in ServiceNow that we'll see later).

However, we're going to want to pass in a couple of other variables so that they can be used within the script, which requires
a slightly more complex bit of scaffolding. Let's take Business Rules as an example. — In a Business Rule, there is a function
which has passed into it, two important variables: current, and previous. As a reminder, here is the default value for an
advanced Business Rule's script field:

(function executeRule (current, previous

}) (current, previous);

Fig. 10.07

As you can see, the executeRule function is defined on line 1, and is in what's called an "IIFE", which stands for
Immediately Invoked Function Expression. What makes this function "immediately invoked", is the () on the last line, into
which are passed the current and previous variables. This is just a method for declaring and invoking a function in a single
statement. This pattern functions basically exactly the same as if you were to declare a function and then execute it using two
separate statements, like so:

function executeRule (current, previous

}

executeRule (current, previous);

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

ServiceNow
DEVELOPMENT
HANDBOOK

e

TIM WOODRUFF

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru

ServiceNow
DEVELOPMENT
HANDBOOK

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest ServiceNow Development Handbook, and level-up your career!

TIM WOODRUFF

Fig. 10.08

The current and previous variables are defined as arguments in the function header on line 1, but they aren't defined
outside the function; so how can they be passed in to the function as arguments? Well, as we'll see shortly, these variables are
defined by the script that invokes the code in this record. There is an API for executing scripts inside of records like this
(GlideScopedEvaluator), and it handles that part for us.

Before we get to talking about how to invoke our script though, let's write our script field's default value. Using the pattern
that Business Rules use as an example, we're going to set our script's default value to something like this:

(function doTransform(current, sourceFieldName, sourceFieldValue, targetFieldName) ({

var targetFieldvValue = sourceFieldValue.toString();
//Add your code here, and return the target field value.
return targetFieldValue;

}) (current, sourceFieldName, sourceFieldValue, targetFieldName);
Fig. 10.09

In this script, we're passing in four variables: current (the current record for which we're doing the transformation),
sourceFieldName (the name of the source field, based on the current transform record), sourceFieldvalue (the original value
of the source field in ServiceNow), and targetFieldName (the target field name, based on the current transform record). In
the transform script, we can use any (or none) of those variables to do our transformation, and then return the final target
field value.

Now that we've got a decent default value for our script field, we'll go to that field's dictionary record, and set the Default
value field to our script. It won't be syntax-highlighted in the field, but that's okay — it will be on the transform record.

= Transform script [Advanced view] & E, -\/‘- E ooo Delete Column | | Update ’I‘

%k Table Incident Export Map [x_13231 h... ¥ Application | Handbook3 Record Scripts Demo @
>k Type | Script Q| @ Active |V
sk Column label | Transform script B Function field
>k Columnname | transform_script Read only
Mandatory
Display

Attributes

Choice List Specification | Dependent Field | Calculated Value | Default Value
Use dynamic
default
Defaultvalue | (function doTransform(current, sourceFieldName, sourceFieldValue, targetFieldName) {
var targetFieldValue = sourceFieldValue.toString();
/fAdd your code here, and return the target field value.

return targetFieldValue;

Plcurrent, sourceFieldName, sourceFieldValue, targetFieldName);

If this were a "real" application, this is the part where we'd go in and fiddle with the form layout to make it pretty, and
then add a UI Policy to make it so the Transform script field only shows up when Use transform is set to true, but this is just
an example so I'm going to skip those steps.

One thing to know about these script fields, is that there are two main ways to get data out of them, after running them
(which, again, we'll see how to do shortly). As mentioned above, you can choose a variable (such as answer), have the script
set the value of that variable to whatever you want the result to be, then retrieve the value of that variable after the script has
executed. Note that this would not work with the pattern that we're using, because our targetFieldvalue variable is wrapped

ServiceNow
DEVELOPMENT
HANDBOOK

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career! e

TIM WOODRUFF

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru

ServiceNow

DEVELOPMENT
HANDBOOK

TIM WOODRUFF

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest ServiceNow Development Handbook, and level-up your career!

in a function scope. However, if we were to remove the function wrapper, then we could just set that variable to the desired
value and retrieve it using our calling script; but then we wouldn't be able to explicitly pass in the variables we're making
available to the script (like current and sourceFieldvalue). Even though those variables would still technically be available
within the script, it would be more confusing and harder to know what exactly you had available to you while writing the
transform script.

The second way of getting some value out of our transform script, is to simply have it evaluate to the final target field
value. The idea of a script evaluating to some value might be a new one, so here's a quick lesson:
To simplify quite a bit, a script "evaluates to" whatever the final expression evaluates to. Consider the following script:

var myName = 'Tim';
var greeting = 'Hello, ' + myName;
Fig. 10.10

This script does not actually evaluate to anything, because although the last statement in the script is doing work, that
statement does not return a value; therefore, it does not "evaluate to" anything. You can test this yourself, by opening up your
web browser (preferably Chrome), pressing F12, navigating to the Console, and entering this code there. Upon pressing Enter,
you'll probably see a line show up that says something like undefined. That's because your script didn't evaluate to anything!

+ myName;

If we add a third line, however, we can cause our little script to evaluate to the value of greeting:

var myName = 'Tim';
var greeting = 'Hello, ' + myName;
greeting;

Fig. 10.11

That third line "evaluates to'" the value of greeting, which - since it's the last statement in our script — means that our
script evaluates to the value of greeting!

+ myName ;

greeting;
¢ "Hello, Tim"

Now, applying this lesson to our scripted records, you might be able to see how our script evaluates to whatever value the
function returns. The function, being an IIFE, is immediately invoked (or run), and since the combination declaration-and-
invocation of that function is the last statement in our script, that means that our script evaluates to whatever that function
returns!

Pro-tip: If we were to add another line of code below our function — even something like var a = 3; - it would mean that our script
would no longer evaluate to the value returned by the function!

ServiceNow
DEVELOPMENT
HANDBOOK

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

TIM WOODRUFF

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru

ServiceNow
DEVELOPMENT
HANDBOOK

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest ServiceNow Development Handbook, and level-up your career!

TIM WOODRUFF

Invoking scripted records

Now that we've got our Incident Export Map table defined, and our Transform script field is set up with a useful default
value, it's time to write the code that will actually use these potentially-scripted records, invoking the scripts within them and
using the values they return.

First, we need to get an Incident record to do the transformation on. Once we have that, we need to loop through all our
active export map records for that Incident and evaluate each of them. We'll focus on the function responsible for doing the
actual transformation.

The API class we're going to be making use of to execute these scripts, is called GlideScopedEvaluator#. This class has the
methods .putvariable(), .getVariable (), and .evaluateScript (). It's the .evaluatescript () method that we're going
to use, since it has optional parameters allowing us to specify the variables to pass into the script in the export map's script
field, so we don't need to use the .putvariable () method (although we could, if we wanted).

Now comes the big chunk of code that ties everything we've done so far together. Read through it yourself once and see if
you can identify what all it's doing, then I'll walk you through the code line-by-line, below.

function getTransformedFieldVals (grIncident) {
var sourceFieldName, targetFieldName, sourceFieldval;
var mappedValues = {};
var gsEval = new GlideScopedEvaluator();
var grExportMap = new GlideRecord(
'x 13231 hb3 rec_sc_inc_export map'
)i
grExportMap.addActiveQuery () ;
grExportMap.query () ;

while (grExportMap.next()) {
sourceFieldName = grExportMap.getValue ('source field name');
targetFieldName = grExportMap.getValue('target field name');
sourceFieldVal = grIncident.getValue (sourceFieldName) ;

//If scripted transform isn't necessary, just set
// target value from source value & continue.
if (grExportMap.getValue('use transform') != "1") {
mappedValues[targetFieldName] = sourceFieldval;
continue; //Continue to next loop iteration.
}
mappedValues[targetFieldName] = gsEval.evaluateScript(
grExportMap, //GR for map record
'transform script', //Script field,
{ //Variables to be accessible within the script
'current': grlIncident,
'sourceFieldName': sourceFieldName,
'sourceFieldValue': sourceFieldvVal,
'targetFieldName': targetFieldName

)
}

return mappedValues;

Fig. 10.12: Getting all transformed field values for a provided Incident.

Let's go line-by-line, and analyze what's happening here.

Line 2: "Hoisted" variable declarations, to keep our code clean and to make sure our code is written as close to how the
JavaScript engine will actually run it as possible.

Ln 3-7: Declaring a variable containing an empty object (which is where our transformed field values will end up), our
instantiation of G1ideScopedEvaluator (which we'll use to evaluate the scripts in our export map records), and a G1ideRecord
object we'll use to query the Export Map table.

4 APl docs for GlideScopedEvaluator can be found here:
https://developer.servicenow.com/dev.do#!/reference/api/quebec/server/no-namespace/c_GlideEvaluatorScopedAPI

ServiceNow
DEVELOPMENT
HANDBOOK

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

e

TIM WOODRUFF

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru

ServiceNow
DEVELOPMENT
HANDBOOK

-

TIM WOODRUFF

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest ServiceNow Development Handbook, and level-up your career!

Ln 8-10: Querying the Export Map table; getting only active export map records.

Ln 11-13: Getting the values that we'll use to determine the target field value (whether by running a transform script or just
getting the original field value).

Ln 16-19: Checking if the Use transform field is not set to true. If it isn't set to true, then just set the mapped value to the
original value from ServiceNow, and continue; - meaning stop the current iteration of the while loop, and skip on to the next
one.

Ln 20-29: Call the .evaluateScript () method of gsEval (our instance of the GlideScopedEvaluator class). For the first
argument, we're passing in the GlideRecord corresponding to the specific export map record we're working on. The second
argument is the name of the script field within that record. The third and final argument is an object containing a list of
key:value pairs, where the key is the name of a variable to be available within the script as it runs, and the value is the actual
value of that variable when the script executes. The .evaluatescript () method returns whatever value the script in the script
field evaluates to, so we're adding the evaluated value to the mappedvalues object.

Ln 31: Finally, once we've looped through all export map records and finished adding all mapped fields and mapped (or
transformed) values to the mappedvalues object, return that object, which should now contain a complete representation of
the record in the target system, including all mapped fields and values.

The beauty of this approach is that in order to add new fields to the mapping, we don't need to add code! We simply need
to add a new export map record! We can write some code in the export map record, but if no transformation is necessary, we
can just leave the Use transform field unchecked, and the original value from the source field in ServiceNow will be sent along
for the target field.

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

ServiceNow
DEVELOPMENT
HANDBOOK

e

TIM WOODRUFF

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru

