
This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

DEBUGGING

Why the thing is doing the thing

That's not a bug, it's a feature.1

—Microsoft

I think this guy might actually be a moron.

—My rubber duck

hen troubleshooting the behavior of a client- or server-side script or object, remember to check the

basics first. If you aren't sure what's causing some behavior, if feasible, start by disabling the object

(Business Rule, Client Script, line of code, etc.) that you think is causing it, and see if that resolves

it. If not, that object probably isn't the culprit. Additionally, don't forget to consider the other scripts that could

be triggered if your script changes something in a form or field!

Business Rules might be running whenever you make a change, and that could be the true root of a given
problem. Your Client Script could be altering a field, which triggers another onChange Client Script that runs
on that field. Your Script Include could be invoking some external code that has other side-effects. A "query"
Business Rule could be filtering your query unexpectedly, or even triggering strange and unintuitive behavior
of certain types of SQL queries (which you can read more about in my article, at https://qbr.snc.guru).

Using the debugging tools built into ServiceNow is a great way to find out what's going on when you're not
sure what script might be causing some behavior you're seeing. The debugging tools can be found in the
Application Navigator, under System Diagnostics > Session Debug2.

In this section, we're going to discuss some of the more effective, but often under-utilized methods of
debugging scripts, both server-side, and client-side.

1 Translation: "I couldn’t figure out how to fix that bug".
2 Pro-tip: Debugging the Debugger

Sometimes if you’ve been fiddling with the debugger window for a little while, it’ll just stop “catching” breakpoints. The window may look like

debugging is enabled, but it’s not for some reason. If this happens to you, just Pause and then re-start debugging by pressing the Stop Debugging

button (which looks like a pause icon), and then clicking the Start Debugging icon that replaces it.

If that doesn’t work, close and then reopen the debugger window.

W

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru
https://qbr.snc.guru/

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

SERVER-SIDE DEBUGGING

When it comes to debugging server-side behavior, you can add breakpoints to your code using the script editor,

by clicking on the line number. For example, in the below screenshot, this Script Include has a breakpoint on line

15:

If you open the Script Debugger (System Diagnostics > Script Debugger), then all scripts with breakpoints you've

created will show there. While debugging, any time those scripts are executed, the transaction will pause3 and

allow you to inspect variables in the local scope and see what might be causing any aberrant behavior.

Once you have the server-side script debugger window open and at least one breakpoint added into your script,

trigger any synchronous server-side script you want to debug (such as by calling a Script Include method in

Scripts – Background or by doing some action which triggers a Business Rule you're trying to debug), and it

should pause at your breakpoint. At that point, switch over to the debugger window and you should see

something like this:

3 If you notice that the debugger isn’t pausing on your breakpoint and you’ve already tried stopping/starting the debugger, consider that

certain lines of code may not actually be “executed” in the typical way that we think of code executing. That is, the JavaScript runner is made

up of a bunch of different parts, each responsible for different jobs. The lexer and scoping engine for example, don’t “execute code” in the way

you might expect the actual JS “Engine” to. Only code executed by the Engine can be paused on. This means that if you do something like

“hoist” a variable (which is a good idea much of the time!), and declare it without initializing it to a value, the JS Engine will not pause on the

line in which you’ve declared the variable, even if you add a breakpoint there! I know this sounds a little arcane, but consider the following code:

var myName;

myName = ‘Tim’;

var yourName = ‘Bob’;

Fig. 2.01

A breakpoint on lines 2 or 3 would pause execution just as you’d expect, but a breakpoint on line 1 would not.

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

The line highlighted in red is the line we're currently paused on. The highlighted line has not yet executed; it's

the line which will execute on the next “step” we tell the debugger to take.

If you look at the top-right of the above image, you'll see a section called Local, in which all of our locally defined

variables are visible. This allows us to inspect current variable values as our code executes. Unfortunately,

sometimes this doesn't work. Certain arrays and objects are shown as “Native JavaScript Array” or some

arbitrary-sounding memory location address. As of the Paris release of ServiceNow though, we can get around

this using the Console at the bottom of the debugger, which we'll discuss in more detail below.

Just above the Local section, you'll see five buttons that allow you to control the debugger, step through your

code, and step into or out of function calls.

The function of these buttons may not be obvious when first glancing at their icons, so let's talk about what each

of them does. Going in order from left to right, these are their functions:

1. Stop Debugging: This button, which looks like a pause icon, will stop the debugger entirely. Any code which is currently
paused, will resume, and no further debugging will happen (even if your code hits another breakpoint) until you click
the button again, to re-start the debugger.

2. Resume Execution: This button, which looks like a 'play' icon, will not halt debugging entirely, but will resume
unmanaged execution of your code. Unlike the Stop Debugging button though, this button will pause execution at the
next breakpoint it hits. For example, if you have a breakpoint inside a while loop, execution will pause the first time

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

you loop through that code. You can “step” through the code from there and follow its execution, or you can just press
the Resume Execution button, and your code will resume. However, the next time the loop runs, your code will pause
again, and control will be given back to you via the debugger, just like the first time through.

3. Step Over Next Function Call: This is the button you're likely to click the most. It basically says, “execute the current
highlighted line (highlighted in red) and pause execution on the next line”. This is very similar to the Step Into Next
Function Call button, except that it will stay at the current “layer” of the call-stack. This means that if the line to be
executed is a function-call, unlike the “Step Into” button, this “Step Over” button will not step into the called function,
and pause execution inside the called function, but will instead execute the called function in its entirety (without
debugging that function line-by-line) and pause on the next line of the current function. Hence the name: Step Over

rather than Step Into.
4. Step Into Next Function Call: As alluded to above, rather than staying at the current “layer” of the call stack, if possible,

this button will step into the function being called on the highlighted line of code being debugged. If the highlighted
line of code executes an outside Script Include, another method within an existing Script Include, or any other type of
script that you have access to, the debugger will switch to that script, adding it to the Call Stack section in the panel
on the left of the debugger window, and will allow you to debug execution of that script line-by-line, even if you didn't
have a breakpoint in that called function. Note that I said, “any type of script that you have access to”. There are some
scripts you won't be able to step into; black-box code, such as any call to the ServiceNow GlideSystem API (for example,
gs.nowDateTime()). In cases like this, pressing the Step Into button won't do any harm, and will simply behave as

though you clicked the Step Over button.
5. Step Out of Current Function: This button is the exact opposite of the Step Into button. If you look at the Call Stack

section in the panel on the left side of the debugger, you can see what scope is just “above” your current “layer” of
the call stack. This makes it easy to Step Into a function call, have a look at how the first few lines are executing, then
easily return to the function you were debugging previously (the one which called this other function), by clicking the
Step Out button.

The Script Debugger is an exceptionally useful, and largely under-utilized tool for exploring the behavior of your

server-side code. I strongly recommend becoming extremely familiar with this tool, its capabilities and

limitations, and how to use it to effectively debug your own code during a rubber duck debugging4 exercise.

Pro-tip: Only synchronous operations can be debugged since the debugger has to pause the thread as it

executes in order to debug it. This means that certain things like inbound API calls cannot be debugged.

That said, for REST APIs in particular, you can trigger an API call using the Rest API Explorer (System Web Services

> REST > REST API Explorer) to run it synchronously and debug your Scripted REST APIs (SRAPIs).

DEBUGGER CONSOLE

In addition to letting you see the exact values of all of your local variables, monitor execution line-by-line, step

into and out of other functions, and generally become a wizard of debugging, the debugger has one more trick

up its sleeve. As of the Paris release of ServiceNow, the debugger now has a Console.

4 “Rubber Ducking”, also known as “Rubber Duck Debugging” is the practice of explaining, out loud, exactly what you expect your code

to be doing, literally line-by-line, to an inanimate object, such as a rubber duck.

See rubberduckdebugging.com for more info.

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru
https://rubberduckdebugging.com/

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

You may have seen the Console section at the bottom of some of the screenshots in the previous section.

Collapsed by default, it gives you just what you'd expect: a console into which you can write code. This can be

monumentally useful for things like logging actual values, including (a) variables which don't show up

meaningfully in the Local panel at the top right of the debugger, and (b) values not stored in discrete variables,

such as the value returned by grIncident.getRowCount().

To get a value to print out in the console, you don't use console.log() like in a browser console, and you don't

use gs.info() or gs.log() like in a background script. Instead, you simply type in some code, and whatever the

last line of code5 evaluates to, will be printed in the console. For example, if I'm debugging a Business Rule, and I

simply type in the console current.isNewRecord();, either true or false will be printed to the console (depending

on whether the Business Rule is executing on a new or existing record, obviously).

Example of running a line of code in the console, and the result being evaluated and logged below.

That's pretty rad, but the console can do much more than just log stuff for us. Consider the following screenshot:

5 If you write a line of code and press Enter in the debugger console, that line will execute. You can write multiple lines of code – even an

entire self-executing function – by instead using SHIFT+Enter to create new lines, then pressing Enter when you’re ready to execute the whole

thing. Just remember that whatever the last line of code evaluates to, is what will be printed in the console.

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

This script is paused on line 14, and you can see that the variable me has already been declared and initialized,

with the property is_cool set to false. Therefore, if we were to continue execution, we would see that the else

block fires, as the condition in the if block is not met.

That is obviously unjust, untrue, and cruel beyond measure. Tim Woodruff is way cool! Therefore, as the

debugger is paused on the line on which the condition in the if block is to be evaluated, we'll use the debugger

to modify the value of me.is_cool so that it properly reflects Tim's totally tubular coolness.

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

This section exported from The ServiceNow Development Handbook; available now!
Click here to get a copy of the latest edition of The ServiceNow Development Handbook, and level-up your career!

As you can see from the screenshot above, in the Local panel at the top-right of the debugger, the is_cool

property of the me object is now – justly6 – set to true7, and all is right with the world again.

But wait! Our code is still paused! The condition on line 14 has not yet been evaluated! Is it possible that the

fiddling we did in the console will actually change how our code runs? Indeed, it is!

Of course, any changes you make through the console only apply for this specific debugging instance, and won't

change how your code will execute in the future. However, this functionality does give you the ability to test out

various changes mid-execution, while your code is running, and see how it behaves! That makes this one of the

most powerful tools in your entire debugging arsenal!

If you've never taken the time to get familiar with it before, let today be the day! Go, now! Put this book down

and go experiment with the Script Debugger!

No wait, come back, finish reading plz. :(

6 If you doubt the veracity of this statement, then allow me to present as evidence, the fact that Tim once wore mirrored sunglasses to class

every day for like 3 months in middle school.

Checkmate, chum.
7 If a variable’s value is modified through the console, it won’t actually immediately show the new value of the variable in the Local panel of

the debugger until the panel is updated by, for example, stepping into the next line of code. However, you can also simply collapse and re-

expand any object definition in the Local panel or the Function section in the Closures panel in order to see the updated values without having

to step into the next line of code.

https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru/
https://handbook.snc.guru
https://handbook.snc.guru

